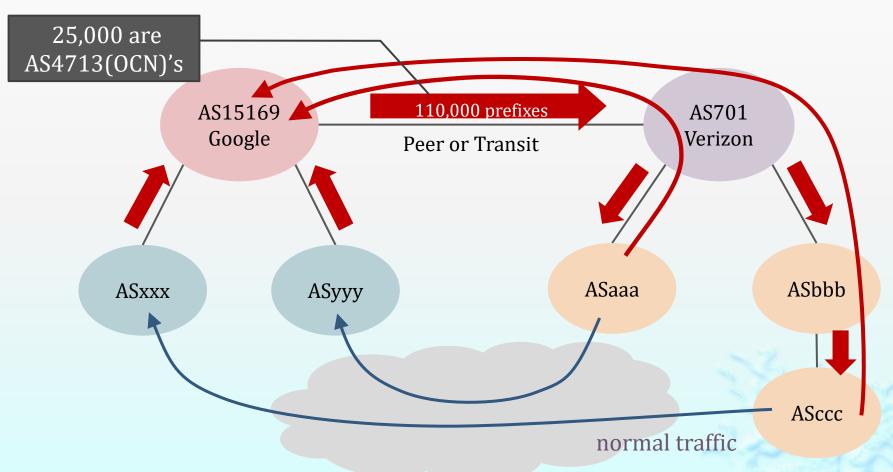
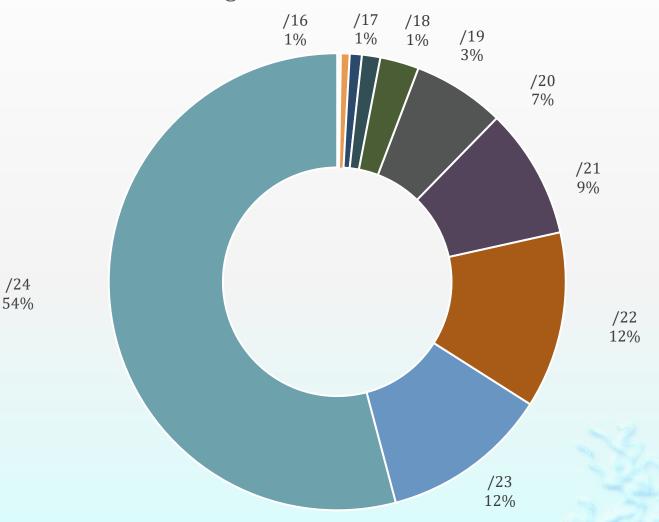
The Internet Outage on Aug. 25 from the point of view of IX

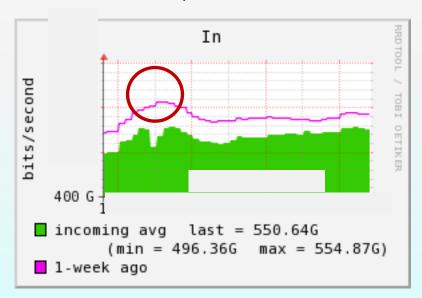

報告人 魯堯 Original Version From: Nasato Goto APIX#16 September 11th 2017

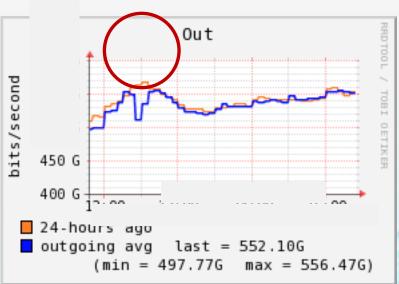
What happened on 08/25?

- Timeline
 - 2017/08/25 12:22 (JST)
 - AS15169 started to announce many IPv4 prefixes, totally 110,000.
 - More specific prefixes were detected at that time.
 - The network failures were detected in Japan.
 - 2017/08/25 12:30 (JST)
 - (AS15169 says) they withdrew the prefixes.
- Main impact of this route leak
 - (1) Unusual traffic forwarding toward AS15169
 - (2) Router performance decrement
- Other influence
 - IX segment hijacking m)


Influence of route leak (1/2)

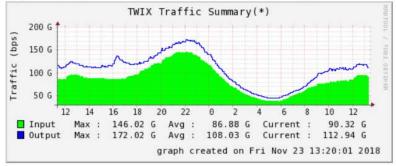
- (1) Unusual traffic forwarding
 - According to the more specific prefixes announced by AS15169, traffic flew into AS15169, via AS701.

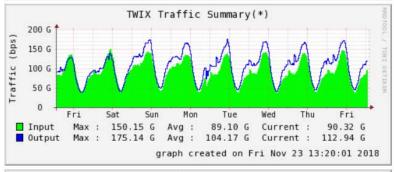

Prefix Length of Leaked Routes

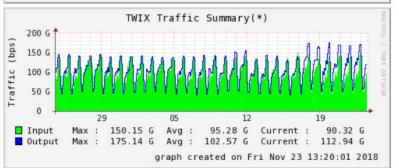

Prefix Length in 110,000 Announcements

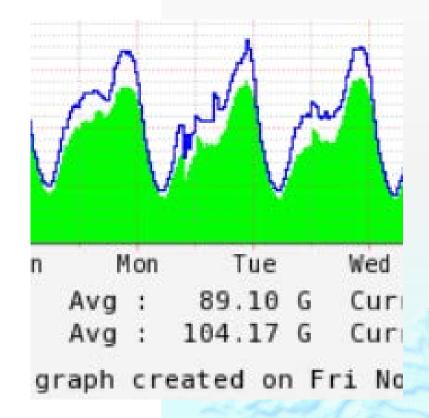
Influence of route leak (1/2)

- (1) Unusual traffic forwarding
 - Traffic influence was observed in JPNAP.
 - Both of In/Out traffic decrement (encircled red) were seemed to be moved from JPNAP to others, or blackholed.

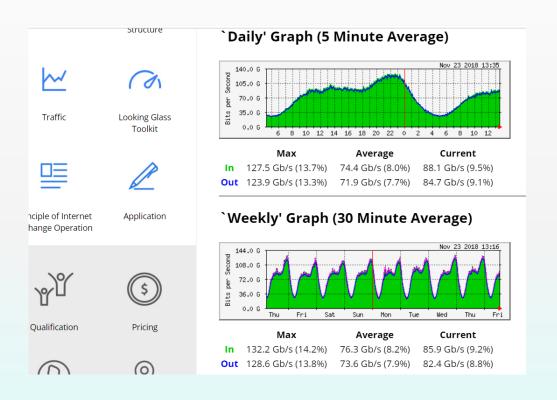


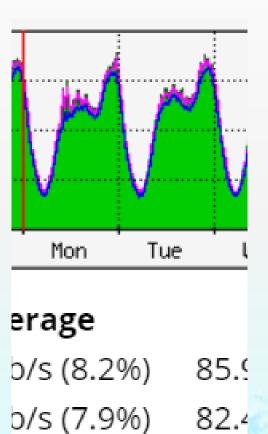


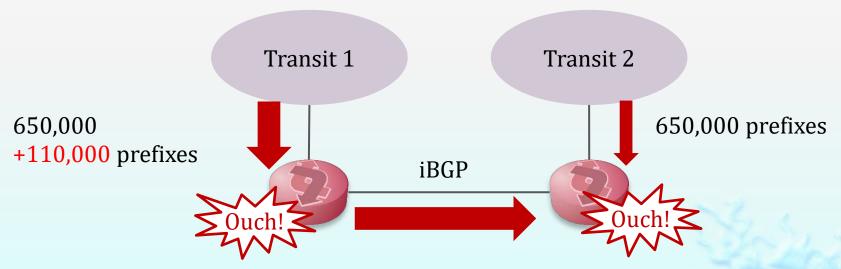

TWIX流量

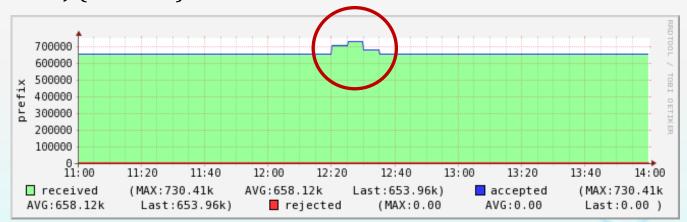

Total Traffic For TWIX

(*)106年4月12日起,TWIX將Public Peering與Private Peering訊務併計為IX訊務總量





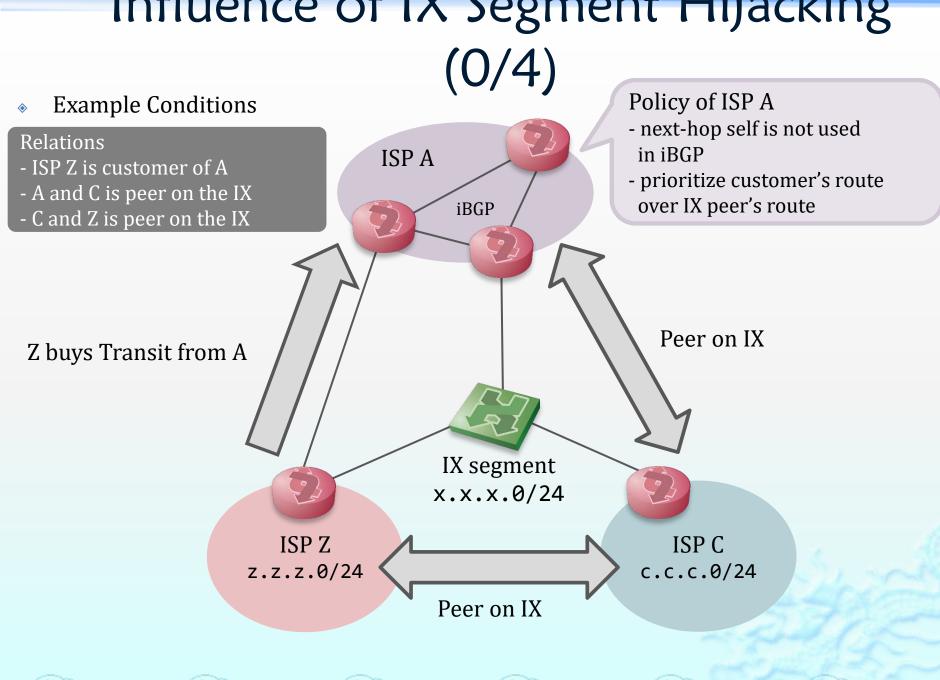

TPIX


Influence of route leak (2/2)

- (2) Router performance decrement
 - Some Japanese ISPs still use router whose TCAM size is not so big.
 - Because of explosive increase of full route, the TCAM overflowed. This caused performance decrement to the routers.

ISP

- transix (AS55391/55392)
 - provides IPv6 Internet service.
 - and also provides IPv4 connectivity over IPv6 as a option service.
- The Backbone router received more than 700,000 prefixes from its transit IIJ (AS2497) at that time.


- But IPv4 traffic was seemed not to be affected.
 - (Guess) This is because the leaked prefixes didn't include target IP addresses of transix IPv4 traffic.11

IX Segment Hijacking

IXP	Google?	Hijacked?
AMS-IX Hong Kong	No	No
BBIX	Yes	Yes
BDIX	No	No
BKNIX	No	No
CHN-IX	No	No
CNX	No	No
DIX-IE	Yes	Yes
Equinix	Yes	Yes
HKIX	Yes	No
IIX	No	No
IX-Australia	Yes	Yes
JPIX	Yes	Yes

IXP	Google?	Hijacked?
JPNAP	Yes	Yes
KINX	No	No
Megaport	Yes	Yes
MumbailX	No	No
MyIX	Yes	Yes
NIXI	No	No
NPIX	No	No
NZIX	?	No
PHOpenIX	?	?
SGIX	Yes	Yes
SOX	Yes	Yes
TPIX	Yes	Yes
VNIX	?	No

- 11 out of 25 APIX member IXs suffered hijack of their IX segment.
- This event might have affected to traffic in IX.

influence of ix segment mijacking #show ip bgp Normal Traffic from A to C Network NextHop LocPrf *>i c.c.c.0/24 x.x.x.C 200 Relations ISP A *>i x.x.x.0/24 a.a.a.1 100 - ISP Z is customer of A - A and C is peer on the IX iBGP - C and Z is peer on the IX Policy of ISP A - next-hop self is not used in iBGP a.a.a.1/30 - prioritize customer's route over IX peer's route x.x.x.C/24IX segment x.x.x.0/24ISP Z ISP C z.z.z.0/24 c.c.c.0/24

influence of ix segment mijacking

ISP A

a.a.a.1/30

iBGP

Z starts to announce its connected segment

Relations

- ISP Z is customer of A
- A and C is peer on the IX
- C and Z is peer on the IX

z.z.z.0/24

v.v.v.0/30x.x.x.0/24

v.v.v.Z/30

ISP Z z.z.z.0/24

conf t router bgp Z redistribute connected

neighbor v.v.v.A remote-as A neighbor x.x.x.C remote-as C

#show ip bgp

LocPrf Network NextHop

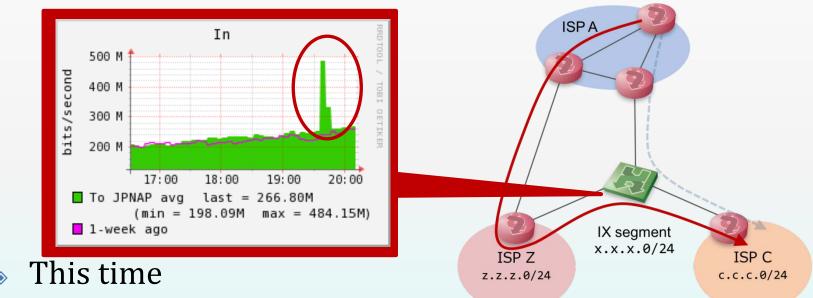
*>i c.c.c.0/24 200 x.x.x.C i x.x.x.0/24 a.a.a.1 100

*>i 300 v.v.v.Z

Policy of ISP A

- next-hop self is not used in iBGP
- prioritize customer's route over IX peer's route

x.x.x.C/24


IX segment x.x.x.0/24

ISP C c.c.c.0/24

influence of ix segment mijacking #show ip bgp Traffic from A to C flow through Z Network NextHop LocPrf *>i c.c.c.0/24 200 x.x.x.C Relations ISP A i x.x.x.0/24 a.a.a.1 100 - ISP Z is customer of A *>i v.v.v.Z 300 - A and C is peer on the IX iBGP - C and Z is peer on the IX a.a.a.1/30 z.z.z.0/24 v.v.v.0/30 x.x.x.0/24v.v.v.Z/30 x.x.x.C/24IX segment x.x.x.0/24ISP C ISP Z z.z.z.0/24 c.c.c.0/24

Influence of IX Segment Hijacking (4/4)

- Past example at JPNAP
 - When a customer leaked our IX segment, the traffic graph of the customer showed spike due to influence of the hijack.

- We didn't observe the traffic increase from AS15169.
- Therefore, in JPNAP, we had no hijacking influence on our traffic.

Q & A

- Max-prefix-limit configuration on eBGP routers to ISPs
- Better Router
- Think 3 times before you move
- And???